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1. INTRODUZIONE 

Il chatbot sviluppato in questo progetto rappresenta un assistente virtuale avanzato progettato 

per rispondere alle domande relative al corso di "Natural Language Processing and Large 

Language Models" (anno accademico 2024/2025). Questo strumento non solo fornisce 

informazioni dettagliate sui contenuti didattici, ma è anche in grado di gestire richieste generali, 

come i dettagli sui docenti, i libri consigliati e altre informazioni correlate al corso. 

Una delle caratteristiche distintive del sistema è la sua capacità di riconoscere domande fuori 

contesto, segnalando all’utente quando una richiesta esula dal dominio di competenza del 

chatbot. Per garantire prestazioni elevate, il sistema adotta un approccio Retrieval-Augmented 

Generation (RAG), che combina la potenza generativa dei Large Language Models (LLM) con 

un meccanismo di recupero delle informazioni basato su una knowledge base strutturata. 

L’architettura del chatbot è stata progettata per garantire: 

• Precisione: grazie a un sistema di retrieval ottimizzato che recupera le informazioni più 

rilevanti dalla knowledge base. 

• Coerenza: attraverso una gestione avanzata del contesto conversazionale. 

• Scalabilità: sfruttando modelli di embedding e indicizzazione efficienti. 

• Robustezza: con meccanismi di controllo per evitare risposte errate o fuori tema. 

Il progetto mira a dimostrare come l’integrazione di tecnologie NLP all’avanguardia possa 

migliorare l’accesso alle informazioni didattiche, offrendo agli studenti uno strumento interattivo 

e affidabile per lo studio. 
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2. ARCHITETTURA DEL SISTEMA 

L’architettura del chatbot è stata progettata per garantire un flusso di elaborazione 

efficiente, dalla ricezione della domanda dell’utente alla generazione di una risposta accurata 

e contestualizzata. Il sistema si compone di diversi moduli interconnessi, ognuno con un 

ruolo specifico nel processo di elaborazione. 

 

Componenti Principali 

1. Preprocessing dei Dati 

o Estrazione del testo: elaborazione di PDF (libri, slide) tramite librerie come 

PyPDF2 e OCR (Pytesseract) per estrarre contenuti testuali anche da 

immagini. 

o Pulizia e formattazione: rimozione di duplicati, correzione di formattazione 

incoerente e ottimizzazione della leggibilità tramite modelli generativi (es. 

Gemini 2.0 Flash). 

o Arricchimento semantico: integrazione di informazioni aggiuntive dal libro 

di testo per migliorare la completezza dei contenuti. 

 

2. Sistema di Embedding e Indicizzazione 

o Modello di embedding: utilizzo di BGE-M3 per convertire il testo in 

rappresentazioni vettoriali ad alta dimensionalità, ottimizzando la similarità 

semantica. 

o Indice FAISS: archiviazione efficiente degli embedding con ricerca 

Approximate Nearest Neighbor (ANN) basata su Max Inner Product 

(MIP), che garantisce velocità e precisione nel retrieval. 

 

3. Gestione della Conversazione 

o Buffer di contesto: memorizzazione dello storico delle interazioni per 

mantenere la coerenza in domande di follow-up. 

o Query Reformulation: riformulazione intelligente delle domande tramite 

Gemini 2.0 Flash, con riconoscimento di richieste ambigue o fuori contesto. 

 

4. Retriever e Generatore di Risposte 

o Retriever: ricerca dei chunk più rilevanti nella knowledge base in base alla 

query riformulata. 

o Generatore (Command-R-Plus): produzione di risposte fluide e ben 

strutturate, integrate con i documenti recuperati. 
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Workflow del Sistema 

 

1. Ricezione della domanda: L’utente invia una query tramite l’interfaccia web o un 

notebook di test. 

2. Riformulazione della query: 

o Analisi del contesto conversazionale. 

o Verifica della pertinenza (domanda in-context vs. out-of-context). 

o Ottimizzazione della query per il retrieval. 

3. Recupero delle informazioni: 

o Ricerca semantica nell’indice FAISS. 

o Selezione dei documenti più rilevanti. 

4. Generazione della risposta: 

o Integrazione dei documenti recuperati nel prompt del generatore. 

o Produzione di una risposta naturale e ben formattata. 

5. Aggiornamento del contesto: 

o Memorizzazione della domanda e della risposta nello storico. 

o Limitazione della memoria a 5 interazioni (FIFO) per evitare sovraccarico. 
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Tecnologie Chiave 

Componente Tecnologia/Modello Ruolo 

Embedding BGE-M3 
Conversione del testo in vettori ad alta 

dimensionalità. 

Indicizzazione FAISS (MIP) Ricerca veloce dei documenti più rilevanti. 

Riformulazione 

query 
Gemini 2.0 Flash 

Ottimizzazione delle domande e filtraggio di 

richieste fuori contesto. 

Generazione 

risposte 
Command-R-Plus 

Produzione di risposte coerenti e dettagliate. 

Estrazione testo 
PyPDF2 + Pytesseract 

(OCR) 

Elaborazione di PDF e immagini per il 

recupero del contenuto testuale. 
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3. PREPARAZIONE DEI DATI 

La qualità del chatbot dipende fortemente dalla solidità della base di conoscenza. Il processo 

di preparazione dei dati è strutturato in diverse fasi, volte a garantire informazioni accurate 

e ben organizzate. 

 

Fonti dei Dati 

Le fonti utilizzate sono: 

• Libro di testo “Natural Language Processing IN ACTION” (H. Lane, C. 

Howard, H. M. Hapke) 

• Slides del corso 

• Sito web UniSA (per prelevare la scheda del corso e i dati relativi ai docenti del 

corso) 

Fasi del pre-processing 

Il processo di preparazione dei dati si articola in diverse fasi, strutturate per garantire la 

massima qualità delle informazioni che andranno a costituire la base di conoscenza del 

chatbot. 

1. Estrazione delle informazioni contenute nel libro 

In questa fase è stato elaborato il PDF del libro, utilizzando la libreria PyPDF2 per scorrere 

tutte le pagine e raccogliendone il contenuto testuale. Una volta completata l'estrazione, il 

testo viene scritto in un file .txt con codifica UTF-8, assicurando così la corretta 

conservazione dei caratteri.  
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2. Embeddings e indicizzazione del libro  

Il testo precedentemente estratto dal libro è stato suddiviso in chunks utilizzando il 

RecursiveCharacterTextSplitter, settando chunk_size pari a 8000 e chunk_overlap a 150. 

Questa scelta è stata motivata dai seguenti fattori: 

• Il RecursiveCharacterTextSplitter suddivide il testo seguendo la gerarchia del 

documento (paragrafi, sezioni, sottosezioni), evitando spezzature arbitrarie che 

potrebbero compromettere la comprensione semantica. Questo approccio è 

particolarmente utile per documenti accademici, che hanno una struttura ben 

definita. 

• Un chunk_size di 8000 caratteri consente di mantenere una porzione ampia di testo 

in ogni frammento, preservando il contesto necessario la fase di RAG e riducendo il 

rischio di perdita di informazioni critiche. Valori inferiori avrebbero prodotto chunks 

troppo piccoli, frammentando maggiormente il contenuto e riducendo l’efficacia del 

retrieval. 

• Il chunk_overlap di 150 caratteri è stato scelto per garantire una continuità tra i 

segmenti, riducendo il rischio che informazioni chiave vengano tagliate tra un chunk 

e l’altro. Un overlap più alto avrebbe comportato un aumento dello spazio occupato 

e dei costi computazionali, senza un beneficio significativo per il recupero delle 

informazioni. 

Successivamente, per rappresentare il testo in uno spazio vettoriale, è stato utilizzato un 

modello open-source di Hugging Face per la generazione degli embeddings: BGE-M3 di 

BAAI. Ogni chunk viene trasformato in un embedding che ne cattura il significato 

semantico. Infine, gli embeddings ottenuti vengono archiviati in un database FAISS 

(Facebook AI Similarity Search), che permette di eseguire ricerche rapide basate sulla 

similarità tra i vettori, ottimizzando così il recupero delle informazioni. In particolare, viene 

impiegata la strategia di similarità basata sul massimo prodotto interno 

(MAX_INNER_PRODUCT) per calcolare la somiglianza tra i vettori.   

 

3. Estrazione delle informazioni contenute nelle slides (STEP_1) 

Il testo contenuto nelle slides in formato PDF è stato estratto seguendo lo stesso approccio 

utilizzato per il libro. Tuttavia, il processo non è stato sufficiente per estrarre il testo 

presente all'interno delle immagini. Per affrontare questa limitazione, è stata impiegata la 

libreria Pytesseract, che utilizza il motore OCR (Optical Character Recognition) di 

Tesseract per riconoscere ed estrarre il testo dalle immagini contenute nel PDF, garantendo 

così l'accurata estrazione anche dei contenuti visibili come immagini.  

È stato scelto un valore di 300 DPI (Dots Per Inch) per l’analisi OCR dei PDF poiché 

rappresenta il miglior compromesso tra qualità e prestazioni. Questa risoluzione garantisce 

un riconoscimento accurato del testo, evitando errori dovuti a immagini poco definite, 
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senza appesantire eccessivamente i file o rallentare l’elaborazione. Inoltre, 300 DPI è lo 

standard raccomandato per garantire contorni chiari e una separazione ottimale dei caratteri. 

Risoluzioni inferiori riducono la precisione, mentre valori superiori aumentano il peso dei 

file senza un miglioramento proporzionale.  

Di seguito sono riportati esempi di estrazione delle informazioni.  

 

 

 

    

Figura 1: Slide originale 

Figura 2: Testo estratto con PyPdf2 Figura 3: Testo estratto con OCR 
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I risultati mostrati evidenziano come l'approccio di estrazione del testo vari a seconda della 

natura del contenuto presente nelle slide. Nei casi in cui il testo è chiaramente visibile e non 

è associato a elementi grafici complessi, l'estrazione diretta del testo dal PDF funziona in 

modo ottimale, garantendo una qualità elevata del contenuto estratto, senza richiedere 

risorse aggiuntive per il processo di OCR. D'altra parte, in presenza di immagini contenenti 

testo, come nelle slide che includono diagrammi, tabelle o screenshot, l'approccio OCR con 

Pytesseract si rivela fondamentale. Questo metodo permette di riconoscere e estrarre il testo 

presente nelle immagini, anche se non è sempre perfetto. In questi casi, il testo estratto 

Figura 4: Slide n°2 originale 

Figura 5: Testo n°2 estratto con PyPdf2 

Figura 6: Testo n°2 estratto con OCR 
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tramite OCR può presentare piccole imprecisioni, soprattutto se la qualità dell'immagine 

non è ottimale, ma rappresenta comunque una soluzione efficace per ottenere contenuti 

altrimenti inaccessibili. La combinazione dei due metodi — estrazione del testo diretto per 

il contenuto testuale e OCR per le immagini — consente di ottenere una copertura completa 

delle informazioni contenute nelle slide, sfruttando i punti di forza di ciascun approccio in 

modo complementare. 

4. Pulizia e riformattazione delle informazioni estratte dalle slides (STEP_2) 

Dopo aver unito le informazioni estratte dalle slides in formato PDF e in formato immagine 

con OCR, la funzione generate_better_text_of_slide si occupa della pulizia e 

riformattazione del testo, al fine di rimuovere informazioni duplicate, migliorare la 

leggibilità, correggere problemi di formattazione, spaziature irregolari e interruzioni di riga. 

In questo modo si ottiene un’elaborazione uniforme e un miglioramento complessivo della 

qualità del testo estratto.  

 

Per questa operazione viene utilizzato un modello generativo (gemini-2.0-flash) che 

riorganizza il testo mantenendone intatto il contenuto informativo, utilizzando il seguente 

prompt: 

 

‘’’ 

The following text has been extracted from a PDF and is poorly formatted, with 

inconsistent spacing, line breaks and structure. 

Your task is to rewrite the text to improve its readability and formatting.  

 

Specifically:\n\n 

1. Remove unnecessary line breaks and spaces to create a smooth, continuous flow 

of text.\n 

2. Correct any formatting issues, such as misplaced punctuation, inconsistent 

capitalization, or fragmented sentences.\n 

3. Ensure the text is clean and easy to read, with proper spacing and structure.\n 

4. Is important that you don't lose any information!.\n 

5. When formulas or code pieces are recognized, rewrite them better using your 

knowledge.\n 

6. Avoid to use o recite any copyrighted content.\n 

7. Do not add unnecessary information, such as 'here is a reformatted text'.\n 

 

Here is the text to reformat:\n\n 

   {text} 

‘’’ 
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Figura 10: Testo n°2 dopo la pulizia e riformattazione 

Figura 7: Testo prima della pulizia e riformattazione 

Figura 8: Testo dopo la pulizia e riformattazione 

Figura 9: Testo n°2 prima della pulizia e riformattazione 
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5. Arricchimento dei contenuti estratti dalle slides con ulteriori informazioni 

(STEP 3) 

Le informazioni estratte dalle slides vengono arricchite con ulteriori dettagli tratti dal libro 

di testo, migliorando così la completezza e la profondità del contenuto: quando viene 

elaborata una slide, il suo contenuto viene convertito in embeddings e confrontato con 

quelli presenti nell’indice FAISS ottenuto dal libro. Questo permette di individuare 

rapidamente i passaggi del libro che condividono una forte affinità concettuale con il testo 

della slide. Le informazioni recuperate vengono quindi integrate nel contenuto originale, 

mantenendone la struttura e il significato, ma arricchendolo con dettagli aggiuntivi che 

migliorano la chiarezza, la coerenza e la completezza dell'esposizione.  

Prompt utilizzato: 

‘’’ 

Task Description 

Enhance the given text by preserving all its original information while improving 

clarity, coherence, and depth. Expand on key concepts by integrating relevant 

insights and additional context without altering the meaning or omitting any 

details. Ensure that the enhanced text flows naturally and remains logically 

structured. 

 

Provided Information 

Original Text: 

{text} 

Additional Context: 

{additional_info} 

 

Guidelines & Constraints 

Retain all information from the original text without omitting any details. 

Add relevant explanations and context to enrich understanding. 

Improve readability, coherence, and logical flow. 

Do not introduce personal opinions or unverifiable information. 

Maintain a structured format with sections separated by the delimiter: 

<----------section----------> 

Keep the dimension of each section under 6000-7000 characters. 

Verification Step 

After generating the enhanced text, perform a rigorous self-check to ensure that 

no information from the original text has been lost or misrepresented. Compare 

the enhanced version with the original text and confirm: 

That all key points and details are present. 

That nothing has been omitted, reinterpreted incorrectly, or altered in meaning. 

If any information is missing or distorted, refine the output accordingly 

before finalizing it. 

‘’' 
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A seguire alcuni esempi dei risultati ottenuti: 

 

  

 

Figura 11: Testo prima dell'arricchimento con le informazioni del libro e divisione in sezioni 

Figura 12: Testo dopo l'arricchimento con le informazioni del libro e divisione in sezioni usando il separatore <-----section------> 

Figura 13: Testo n°2 prima dell'arricchimento con le informazioni del libro e divisione in sezioni 

Figura 14: Testo n°2 dopo l'arricchimento con le informazioni del libro e divisione in sezioni usando il separatore <-----section------> 
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6. Creazione del file finale 

Il risultato della fase precedente è disponibile nella cartella 

data/preprocessing/STEP3. Qui si trova un file finale per ciascun 

pacchetto di slide di partenza, opportunamente preprocessato, 

arricchito con le informazioni del libro e suddiviso in sezioni. 

In questa fase, tutte le informazioni rielaborate vengono unite in 

un unico file contenente l’intero contenuto del corso.  

Le varie slide vengono separate utilizzando il delimitatore  

<----------section---------->. 

Inoltre, le informazioni aggiuntive relative al corso, ai docenti 

assegnati e ad altri dettagli rilevanti, non presenti né nel libro né 

nelle slide, vengono integrate in questo file senza ulteriori 

trasformazioni. Anche queste informazioni vengono inserite 

utilizzando lo stesso separatore impiegato per le slide, garantendo 

così uniformità nella struttura del documento finale.  

In questo modo si è ottenuto un unico file testuale che contiene tutte le informazioni 

che costituiranno la conoscenza di base del chatbot.  

7. Embeddings e indicizzazione del file finale 

Il testo finale ottenuto viene quindi suddiviso automaticamente dall’LLM in sezioni logiche 

delimitate dai marcatori specifici utilizzati (<----------section---------->).  

È stato scelto questo metodo di suddivisione, il Section Based Chunking, in quanto 

presenta numerosi vantaggi rispetto ai metodi di chunking più tradizionali come il Fixed 

Size Chunking o il Recursive Chunking. Tra questi abbiamo: 

• Maggiore coerenza semantica, poiché i chunks vengono creati seguendo la 

struttura logica del documento ed evitando di spezzare concetti o frasi a metà, 

migliorando di conseguenza il recupero delle informazioni e la gestione di documenti 

complessi e strutturati 

• Maggiore efficienza nell’uso dei token, in quanto dividendo concettualmente i 

documenti non è più necessario un overlap tra le diverse sezioni, evitando così la 

ripetizione di contesto e riducendo il costo computazionale 

Queste sezioni così ricavate vengono convertite in rappresentazioni vettoriali (embeddings) 

utilizzando il modello di embedding BGE-M3. Gli embeddings vengono infine indicizzati 

tramite FAISS. 

Figura 15: directory STEP 3 
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Dopo aver generato i chunks, ci è chiesti se la loro diversa dimensione potesse influenzare 

la fase di retrieval. Per valutare questo aspetto, sono state effettuate 956 retrieval con 956 

query, contenute nel file “LLM\data\questions\6Marzo2025__ALL.json”. 

Successivamente, è stata analizzata la correlazione tra la dimensione dei chunks e il numero 

di volte in cui questi venivano recuperati. 

 

 

 

Il grafico mostra la distribuzione del numero di recuperi in funzione della dimensione del 

chunka: dallo scatter plot non è evidente un chiaro trend di crescita o decrescita netta e non 

sembra emergere una correlazione evidente tra dimensione e frequenza di retrieval. 

- Coefficiente di Correlazione ≃ 0,335 

Figura 16: dimensione di ogni chunck 

Figura 17: Scatter plot dimensione del chunck – numero di volte in cui è stato recuperato 
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4. GESTIONE DELLA CONVERSAZIONE 

Il processo di generazione delle risposte comprende: 
 
1. Recupero del contesto: 

o Viene eseguito un recupero dei documenti rilevanti per la domanda corrente 

(retrieved_docs_current), e il loro contenuto viene concatenato in una stringa 

(retrieved_context). 

o Se c'è una domanda precedente nella cronologia (self.history), viene recuperata la 

query riformulata e si ottengono i documenti rilevanti per essa. Questo contesto viene 

aggiunto al contesto attuale. 
 

2. Riformulazione della query: 

o La query originale, insieme alla cronologia della conversazione e al contesto 

recuperato, viene inviata a un sistema di riformulazione delle domande 

(query_handling_chain) per ottimizzare la query in modo che possa ottenere una 

risposta migliore dal modello di QA (domanda-risposta). 
 

3. Verifica della pertinenza della query: 

o Se la query riformulata contiene un segnale di "fuori contesto" (stringa 

"OUT_OF_CONTEXT_QUESTION"), viene invocato un processo di chiarimento 

per gestire la situazione, e non vengono recuperati ulteriori documenti. 

o Se la query è valida, viene utilizzata la catena di QA (qa_chain) per ottenere una 

risposta alla query riformulata e i documenti sorgente associati. 
 

4. Registrazione dell'interazione: 

o I dettagli dell'interazione (domanda, query riformulata, risposta, documenti recuperati) 

vengono registrati nel log delle interazioni. 

o La nuova domanda, la risposta e la query riformulata vengono aggiunti alla cronologia 

per future interazioni. 
 

5. Restituzione del risultato: 

o La funzione restituisce un oggetto JSON che contiene i dettagli dell'interazione, come 

la domanda, la risposta e i documenti di origine. 
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Un aspetto critico del sistema è la gestione dinamica della conversazione, essenziale per 

mantenere coerenza e continuità nelle interazioni. Il sistema implementa meccanismi 

avanzati per memorizzare, analizzare e utilizzare lo storico delle conversazioni per generare 

risposte contestualizzate. 

Buffer e Storico della Conversazione 

• Buffer di Conversazione: 

Il sistema memorizza lo storico delle interazioni mediante un dizionario 

memory_history che mantiene traccia del dialogo. Questo componente è essenziale 

per permettere al sistema di mantenere il contesto attraverso più scambi comunicativi. 

• Gestione dello Storico: 

Lo storico viene limitato a un massimo di max_history interazioni per evitare 

sovraccarichi di contesto. Quando il limite viene raggiunto, le interazioni più vecchie 

vengono rimosse secondo un meccanismo FIFO (First In, First Out). 

Dopo diverse prove il valore scelto per il massimo numero di interazioni da salvare è 5. 

• Struttura del Dato: 

Ogni interazione è memorizzata come un dizionario contenente: 

o domanda originale 

dell'utente 

o query riformulata 

 

o risposta finale 

fornita 

• Formattazione dello Storico: 

Per l'analisi, lo storico viene formattato come una sequenza di coppie User: [...] 

Assistant: [...], facilitando l'interpretazione da parte del modello di language 

generation. 
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Riformulazione delle Query e guardrail per domande fuori contesto 

Per ottimizzare il recupero delle informazioni, il sistema implementa una catena di 

riformulazione delle query che tramite Gemini 2.0 Flash trasforma la domanda dell'utente 

in una query ottimizzata per la ricerca nella knowledge base.  

 

Prompt di Riformulazione 

Il sistema utilizza il seguente prompt per riformulare le query:  

''' 
You are an expert assistant specialized in NLP and LLMs.  
Analyze the user's query considering conversation history and retrieved documents. 
Determine if the question is a follow-up or independent and if it belongs to the 
LLMs/NLP domain. 
**Steps:** 
1. **Identify Follow-up Queries:** If the question depends on prior context, merge 

relevant details into a self-contained query. 
2. **Analyze Retrieved Documents:** Use the retrieved context to determine if the 

question is relevant. 
3. **Determine Domain Relevance:** If the question is unrelated to LLMs/NLP, 

return: 
OUT_OF_CONTEXT_QUESTION: " say that you can't response, for example saying 
that the question is outside your knowledge domain. 

4. **Format Output:** 
- If valid, return only the refined query. 
- If out of context, return "OUT_OF_CONTEXT_QUESTION: <response>". 

 
**Few-shot Examples:** 
            
  **Example 1 - Follow-up Query:** 

**Conversation History:** 
User: How does GPT-4 handle long context? 
Assistant: GPT-4 uses positional embeddings and attention mechanisms to 
process long contexts efficiently. 
User: Can it handle 10,000 tokens? 
**Rewritten Query:** "Can GPT-4 handle 10,000 tokens given its architecture?" 
            

  **Example 2 - Independent Query:** 
 **User Question:** "What is zero-shot learning in NLP?" 
 **Rewritten Query:** "What is zero-shot learning in NLP?" 
             

  **Example 3 - Out of Context Query:** 
 **User Question:** "Who won the FIFA World Cup in 2018?" 
 **Response:** "OUT_OF_CONTEXT_QUESTION: I'm sorry but I can't provide 

information about football. I specialize in answering questions related to 
NLP and LLMs." 

             
   **Example 4 - Out of Context Query:** 
       **User Question:** "What is the capital of Japan?" 

 **Response:** "OUT_OF_CONTEXT_QUESTION: I'm designed to assist with NLP and 
LLM-related topics. General knowledge queries are outside my domain." 

             

   **Example 5 - Out of Context Query:** 
  **User Question:** "Can you recommend a good sci-fi book?" 
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  **Response:** "OUT_OF_CONTEXT_QUESTION: My expertise is in NLP and LLMs. I 
recommend checking book review platforms for such recommendations." 

             
   **Example 6 - Out of Context Query:** 

  **User Question:** "Who invented the light bulb?" 
**Response:** "OUT_OF_CONTEXT_QUESTION: This question falls outside my 

specialized domain of NLP and LLMs." 
              

    **Example 7 - Are you sure Query:** 
  **Conversation History:** 
  User: How does GPT-4 handle long context? 
  Assistant: GPT-4 uses positional embeddings and attention mechanisms to    

process long contexts efficiently. 
   **User Question:** "Are you sure" 
   **Response:** "OUT_OF_CONTEXT_QUESTION: Yes, i'm sure. GPT-4 handle long 

context using positional embeddings." 
              

**Conversation History:** 
  {chat_history}   

**User Question:** 
  {question}   

**Retrieved Context:** 
  {retrieved_context} 
'''  
 

Il prompt fornito combina diverse strategie per guidare il comportamento del modello in 

modo efficace e controllato. In particolare, si possono individuare quattro principali 

categorie di prompting utilizzate: 

- Few-shot Prompting 

Il prompt include esempi specifici di input e output attesi per guidare il modello. I "few-

shot examples" mostrano come distinguere tra: 

• Follow-up query (esempio 1) 

• Domanda indipendente (esempio 2) 

• Domanda fuori contesto (esempi 3-6) 

• Conferma di una risposta precedente (esempio 7) 

L'uso di esempi aiuta il modello a generalizzare il comportamento desiderato senza dover 

esplicitare ogni possibile casistica nelle istruzioni iniziali. 
 

- Meta Prompt 

Il prompt stabilisce come il modello deve ragionare e prendere decisioni. Non si limita 

a chiedere una risposta, ma gli impone di: 

• Analizzare la query in base alla cronologia della conversazione. 

• Controllare il contesto recuperato. 

• Determinare se la domanda è pertinente o fuori ambito. 

• Riformulare le query di follow-up in modo compatto, integrando il contesto 

necessario. 
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- Role Prompting 

All'inizio del prompt, il modello viene definito come un esperto di NLP e LLMs. Questo 

approccio serve a: 

• Limitare il comportamento del modello al dominio specifico di competenza. 

• Prevenire risposte fuori tema, migliorando la qualità delle interazioni. 

L'assegnazione di un ruolo chiaro aiuta a focalizzare il modello su un contesto preciso, 

riducendo il rischio di risposte generiche o imprecise. 

- Structured Prompting 

Il prompt è organizzato in modo chiaro e sistematico, facilitando un comportamento 

prevedibile e coerente. La struttura segue una logica ben definita: 

• Descrizione del ruolo e del compito ("You are an expert assistant specialized in 

NLP and LLMs..."). 

• Elenco dei passaggi che il modello deve seguire per analizzare la domanda. 

• Formato di output stabilito, con due possibilità: 

o Una query riformulata, se la domanda è pertinente. 

o Un messaggio standardizzato (OUT_OF_CONTEXT_QUESTION), se la 

domanda è fuori contesto. 

• Esempi strutturati, che coprono diverse tipologie di input utente. 

Questa organizzazione permette di guidare il modello in modo preciso e ridurre 

l’ambiguità nelle risposte. 

 

La funzione principale di questo prompt è analizzare la domanda dell'utente tenendo conto 

della cronologia della conversazione e dei documenti recuperati, al fine di determinare se la 

richiesta è un follow-up di una domanda precedente o un'interrogazione indipendente. 

Inoltre, valuta la pertinenza del quesito rispetto al dominio degli LLM e dell’NLP, 

restituendo una risposta appropriata. 

 

 

In questo caso, si osserva che il contesto estratto risulta rilevante sia per la query attuale che 

per quella precedente. Questa scelta è motivata dalla necessità di risolvere un problema 

specifico: qualora vi sia una domanda di follow-up che non contenga esplicitamente il 
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contesto, come ad esempio “go more in detail about it”, effettuare un recupero dei 

documenti basato solo sulla similarità con tale query non porterebbe a risultati significativi. 

Di conseguenza, il sistema avrebbe un'alta probabilità di classificare la query come fuori 

contesto. Includendo anche le informazioni estratte dalla domanda precedente, si riesce a 

risolvere questa problematica, migliorando così la pertinenza dei risultati. 

Se la domanda è fuori contesto, il sistema genera un messaggio che informa l’utente 

dell’assenza di una risposta pertinente. Il prompt fornisce anche esempi strutturati per 

illustrare il suo funzionamento, evidenziando casi di riformulazione di query di follow-up, 

domande indipendenti e domande fuori dominio. L'integrazione di questa logica nel flusso 

di elaborazione consente al sistema di migliorare la coerenza delle risposte e garantire una 

gestione più efficace delle interazioni utente-modello. 

La riformulazione della query consente di gestire in modo corretto sia domande scritte male 

che domande di follow-up, di seguito diversi test eseguiti. 
 

1. Domanda scritta male 

 

 

2. Follow-up question 
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3. Altro esempio di Follow-up 

 

 

 

4. Domande fuori contesto e follow-up 
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Generazione delle Risposte 

Una volta riformulata la query, il sistema genera risposte utilizzando una catena di 

generazione RAG (Retrieval-Augmented Generation).  

Prompt di Generazione 

Il sistema utilizza il seguente prompt per generare risposte: 

""" 

You are an advanced AI assistant using Retrieval-Augmented Generation (RAG).  

Use the provided knowledge to generate an accurate and coherent response.  

if you lack sufficient context, say you cannot answer. 

**Context:** 

  {context} 

**User Question:** 

  {question} 

**Response Format:** 

  - If you can answer, provide a well-structured response. 

  - If not, respond: "I'm sorry, but I don't have enough information to answer." 

  - Generation language: ENGLISH. 

  - !IMPORTANT: generate a response in HTML div format !. 

 “"" 
 

A differenza del primo prompt, che definisce una logica decisionale chiara e articolata per 

guidare il modello nell'analisi della query, questo secondo prompt adotta un approccio più 

essenziale. Non richiede una valutazione approfondita del contesto o una distinzione tra 

diverse tipologie di domande, ma si limita a orientare il modello verso la generazione 

dell'output, ponendo maggiore enfasi sulla sua forma piuttosto che sul processo di 

ragionamento sottostante, riducendo anche il carico computazionale. 
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5. SCELTA DEI MODELLI 

Nel progetto, la selezione dei modelli è stata effettuata con l'obiettivo di ottimizzare il 

recupero delle informazioni e la generazione delle risposte nel chatbot. Ogni componente 

è stata scelta per garantire un equilibrio tra accuratezza, efficienza computazionale e 

scalabilità. Di seguito vengono giustificate le scelte dei modelli utilizzati. 

Modello di Generazione 1: Gemini 2.0 Flash 

Per la riformulazione della domanda, è stato scelto Gemini 2.0 Flash (temperatura: 0.5), 

in quanto offre un'eccellente combinazione di velocità ed efficienza. I motivi principali della 

scelta sono: 

• Qualità delle risposte: in grado di fornire risposte coerenti e contestualmente 

rilevanti, integrando informazioni recuperate dal sistema RAG. 

• Ottimizzazione per scenari real-time: rispetto ad altri modelli più pesanti, Gemini 

2.0 Flash permette una generazione rapida senza sacrificare significativamente la 

qualità, essenziale per garantire un’esperienza utente fluida nel chatbot. 

• Alte capacità di adattarsi ad istruzioni data nel prompt. 

• Utilizzo limitato gratuito, adatto alle esigenze del progetto. 

• Utilizzo tramite API: non è stato necessario fornirsi di un elaboratore in grado di 

eseguire il modello. 

Modello di Generazione 2: Command-r-plus-04-2024 
 

Per la seconda query, il cui compito principale era generare risposte basate sulle 

informazioni recuperate dal retrieval, è stato scelto il modello command-r-plus-04-2024 

(temperatura: 0.5). Questo modello, ottimizzato per attività di Retrieval-Augmented 

Generation (RAG), ha dimostrato prestazioni eccellenti. 

 

La selezione dei modelli è avvenuta attraverso un processo strutturato. Abbiamo utilizzato 

un LLM per generare circa 950 domande, partendo da una versione precedente delle 

sezioni del testo. Il procedimento ha previsto l’invio di ciascuna sezione come prompt al 

modello, che ha restituito cinque domande per volta. Queste domande, salvate nel file 

LLM\data\questions\6Marzo2025__ALL.json, sono state successivamente impiegate per 

testare l’accuratezza delle risposte fornite dagli assistenti. 

Per ogni test, sono state selezionate 100 domande casuali, poste a due assistenti: 

• Uno basato su Gemini 2.0 Flash 

• L’altro su Command-R-Plus 

Le risposte generate sono state comparate e valutate in termini di accuratezza e qualità.  
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Dai risultati, Command-R-Plus ha ottenuto le migliori prestazioni, risultando quindi il 

modello scelto per la seconda query di generazione.  

Modello di Embedding: BGE-m3 

Per la creazione degli embeddings delle informazioni estratte dai PDF (libro di testo e slide), 

è stato utilizzato BGE-m3 (BAAI General Embedding model, versione m3), che 

utilizza lo stesso tokenizer di XLM-RoBERTa.  

Questo modello è stato scelto per diversi motivi, in particolare: 

• Multi-Functionality: è in grado di eseguire simultaneamente le tre principali 

funzionalità di retrieval degli embedding model: dense retrieval, multi-vector retrieval 

e sparse retrieval, garantendo che le query del chatbot restituiscano i chunk di testo 

più pertinenti. 

• Multi-Granularity: è capace di processare input di diverse granularità, dai testi brevi 

ai documenti lunghi fino a 8192 token, rendendolo ideale per analizzare sia slide 

concise che interi capitoli di libri di testo.  

  

 

 
 
 
 

Il Mean Reciprocal Rank (MRR) è 

una metrica di valutazione utilizzata 

nei sistemi di recupero informazioni e 

ranking. Misura l'efficacia di un 

sistema nel restituire risultati rilevanti 

in una lista ordinata. 
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Motore di Indicizzazione: FAISS con Max Inner Product 

Per l'archiviazione e la ricerca degli embeddings, è stato adottato FAISS (Facebook AI 

Similarity Search) con il Max Inner Product (MIP) come metrica di similarità.  
 

Le motivazioni principali sono: 

• Efficienza nella ricerca Approximate Nearest Neighbor (ANN): FAISS è 

altamente ottimizzato per la gestione di database vettoriali di grandi dimensioni, 

consentendo un retrieval veloce ed efficace. 

• Utilizzo del Max Inner Product: 

o BGE-m3 restituisce embeddings già normalizzati: ogni embedding generato 

ha una norma unitaria. In questo caso, usare Max Inner Product equivale ad 

usare Cosine Similarity, ottenendo vantaggi in termini di velocità di calcolo.  

• Scalabilità: FAISS permette di gestire un grande volume di documenti senza 

compromettere le prestazioni. 
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6. UTILIZZO DEL CHATBOT 

Per utilizzare il chatbot è stata sviluppata una semplice interfaccia grafica in formato web-

app, con Flask come motore server. 

Per avviare l'applicazione, spostarsi nella directory principale del progetto ed eseguire uno 

dei seguenti comandi: 

python app.py                   flask run --host=0.0.0.0 --port=5000 

Nota: se necessario installare le librerie necessarie ( pip install -r requirements.txt ) 

E accedere all’interfaccia tramite browser all’indirizzo  localhost:5000 

    

In alternativa, è possibile testare l'assistente senza interfaccia grafica utilizzando il 

notebook presente in LLM/TestAssistant.ipynb.  
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7. VALUTAZIONE E RISULTATI 

La valutazione del sistema si basa su metriche specifiche che ne valutano l'efficacia e la 

qualità complessiva. 

Metriche di Valutazione 

Le principali metriche adottate sono: 

• Accuratezza: percentuale di risposte corrette e in linea con il materiale didattico. 

• Rilevanza: pertinenza delle risposte in relazione alla domanda posta. 

• Completezza: capacità del sistema di fornire informazioni esaustive e dettagliate. 

• Naturalezza: fluidità e correttezza del linguaggio utilizzato nelle risposte. 

• Robustezza: capacità del sistema di resistere a prompt forvianti 

• Precisione: capacità di riconoscere domande fuori contesto 
 

Log delle Interazioni 

Per monitorare e migliorare le prestazioni del chatbot, è stato implementato un sistema di 

logging che registra ogni interazione. Ogni log include le seguenti informazioni:  

• Timestamp 

• Domanda originale 

• Query riformulata 

• Risposta grezza 

• Risposta finale (post-processata) 

• Modello di generazione 

• Modello di embedding 

• Indice FAISS utilizzato 

• Elenco dei documenti recuperati 

dal retriever 
 

Si è inoltre generata un’interfaccia per valutare in modo più agevole tali risultati, come 

riportato di seguito. 
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Risultati Sperimentali 

I test condotti sul sistema hanno evidenziato prestazioni eccellenti in tutte le metriche: 

 

❖ Accuratezza 

Come accennato in precedenza, i test condotti hanno riportato un’alta accuracy, 

dimostrando la solidità del sistema nelle diverse condizioni di valutazione. Questa metrica 

non solo ha permesso di valutare le performance del modello, ma si è rivelata utile anche 

nella fase di selezione tra diversi modelli. 

 

❖ Rilevanza 

 

Il chatbot ha dimostrato un'elevata capacità di fornire risposte pertinenti, allineandosi con 

il contesto della richiesta dell'utente e utilizzando le informazioni più rilevanti recuperate 

dal sistema RAG.  
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❖ Naturalezza 

Le risposte generate sono risultate chiare e naturali, con una costruzione grammaticale 
corretta e uno stile coerente con il contesto accademico.  

❖ Completezza 

 

Durante i test, il chatbot ha risposto in modo approfondito, fornendo spiegazioni dettagliate 
e ben strutturate, senza tralasciare aspetti importanti. 
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❖ Robustezza 

 

Il chatbot si è dimostrato resistente a input ambigui o fuorvianti, mantenendo la coerenza 
nelle risposte ed evitando di generare informazioni errate.  

❖ Precisione 

Il sistema ha gestito in modo efficiente le domande non pertinenti, evitando di fornire 

risposte non correlate. La precisione è stata garantita principalmente dal primo passo del 

processo, che prevede l'applicazione di regole ben definite e l'utilizzo di esempi few-shot 

forniti nel prompt iniziale. Sono stati eseguiti dei test, riportati nel file 

‘data/logs/test_riformulazione_OUT_OF_CONTEXT2.json’, in cui sono state poste 96 

domande fuori contesto all'assistente. Il risultato ottenuto è stato una recall del 100%.  

 

Per verificare che il modello non fosse troppo conservativo nel rifiutare le domande, è stato 

effettuato un ulteriore test, i cui risultati sono documentati nel file 

‘data/logs/test_riformulazione_IN_CONTEXT.json’. In questo caso, su 100 domande 

pertinenti al contesto, solo 3 sono state erroneamente classificate come fuori contesto, con 

una precisione del 97%. 
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8. CONCLUSIONI 

Il progetto presentato ha dimostrato l’efficacia dell’approccio Retrieval-Augmented 
Generation (RAG) nell’ambito della creazione di un chatbot intelligente per il corso di 
"Natural Language Processing e Large Language Models". L'integrazione di modelli 
avanzati come Gemini 2.0 Flash e Command-r-plus per la generazione delle risposte, 
BGE-M3 per la rappresentazione vettoriale dei testi e FAISS per l’indicizzazione ha 
consentito di ottenere un sistema altamente performante, in grado di fornire risposte precise 
e contestualizzate. 

I risultati sperimentali hanno confermato l’accuratezza, la rilevanza e la robustezza del 
chatbot, dimostrando la validità delle scelte architetturali adottate. La gestione della 
conversazione attraverso la riformulazione delle query e il mantenimento dello storico ha 
permesso di migliorare significativamente la fluidità dell’interazione con l’utente, 
ottimizzando il recupero delle informazioni e garantendo continuità nel dialogo. 

Tuttavia, sono possibili ulteriori miglioramenti. In particolare, si potrebbe affinare il sistema 
di query reformulation per una gestione ancora più avanzata delle domande ambigue o 
complesse. Inoltre, l’integrazione di tecniche di fine-tuning su dataset specifici potrebbe 
raffinare ulteriormente le capacità del modello generativo, migliorando la qualità delle 
risposte. 

In conclusione, il chatbot realizzato rappresenta un solido punto di partenza per future 
evoluzioni nel campo dell’assistenza virtuale accademica. L'approccio adottato potrebbe 
essere esteso ad altri corsi universitari o contesti educativi, rendendo l'accesso alle 
informazioni più efficiente e personalizzato per gli studenti. 


